Making a poster with beamer

Beamer is a great tool not only for making beautiful slide decks for presentations, but also for making wonderful posters!

Below I've included a recent poster that I've made to serve as a template. All the technical details of the code that went into this poster can be found in the tutorials on using latex, beamer and tikz. If you have additional questions, not covered by those, please reach out and I'd be happy to modify this post to include those details. 

The resulting poster looks like this:


Here is the source code you need to use this as a leaping off point for your poster! The template I began with is open source from the Computational Physics and Biophysics Group at Jacobs University.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Jacobs Landscape Poster
% LaTeX Template
% Version 1.0 (29/03/13)
%
% Created by:
% Computational Physics and Biophysics Group, Jacobs University
% https://teamwork.jacobs-university.de:8443/confluence/display/CoPandBiG/LaTeX+Poster
% 
% Further modified by:
% Nathaniel Johnston (nathaniel@njohnston.ca)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%----------------------------------------------------------------------------------------
%	PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------

\documentclass[final]{beamer}
\usepackage{xcolor,pgf}
\def\bm#1{\mbox{\boldmath{$#1$}}}
\definecolor{Mblue}{RGB}{0,45,98}
\definecolor{Myellow}{RGB}{255,207,6}


\usepackage[T1]{fontenc}
\usepackage[scale=1.24]{beamerposter} % Use the beamerposter package for laying out the poster
\usepackage{transparent}
\usepackage[absolute,overlay]{textpos}
\usepackage{color}
\usepackage{tikz}
\usetikzlibrary{shadings}
\usepackage{amsmath,amssymb,latexsym}
\usepackage[many]{tcolorbox}
\usepackage{xparse}
\usepackage{tikz}
\usetikzlibrary{shadows}
\usepackage{booktabs}
\usetikzlibrary{calc}
\usepackage[T1]{fontenc}


\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
\newcommand{\DrawBox}[3][]{%
    \tikz[overlay,remember picture]{
    \draw[black,#1]
      ($(#2)+(-0.5em,2.0ex)$) rectangle
      ($(#3)+(0.75em,-0.75ex)$);}
}

\newcommand*{\hand}{%
     \item[{\includegraphics[width=1.75cm]{figures/hand}}]%
    }
    
    \newcommand*{\hands}{%
     \item[{\includegraphics[width=1.75cm]{figures/thumbsup}}]%
    }


\newcommand{\ModelTp}{\raisebox{6pt}{\tikz{\draw[blue,dashed,line width=3pt](0,0) -- (16mm,0);}}}
\newcommand{\ModelTg}{\raisebox{6pt}{\tikz{\draw[violet,dashed,line width=3pt](0,0) -- (16mm,0);}}}
\newcommand{\ELTp}{\raisebox{6pt}{\tikz{\draw[blue,solid,line width=3pt](0,0) -- (16mm,0);}}}
\newcommand{\ELTg}{\raisebox{6pt}{\tikz{\draw[violet,solid,line width=3pt](0,0) -- (16mm,0);}}}
\newcommand{\TermOne}{\raisebox{6pt}{\tikz{\draw[blue,solid,line width=3pt](0,0) -- (16mm,0);}}}
\newcommand{\TermThree}{\raisebox{6pt}{\tikz{\draw[orange,solid,line width=3pt](0,0) -- (16mm,0);}}}

\usetheme{confposter} % Use the confposter theme supplied with this template
{\usefont{T1}{fvm}{m}{n}}

\newtcolorbox{myblock}[1][]{
  beamer,
  width=\textwidth+7pt,
  enlarge left by=-3pt,
  colframe=block body.bg,
  bottom=0pt,
  top=-2pt,
  left=0pt,
  right=0pt,
  toptitle=-1pt,
  bottomtitle=-1pt,
  fonttitle=\normalfont,
  adjusted title=#1,
  interior titled code={
    \shade[left color=Myellow,right color=Myellow!50,middle color=Myellow!20] 
      (title.south west) --
      (title.south east) {[rounded corners] -- 
      (title.north east)  -- 
      (title.north west)} --
      (title.south west); 
  }
}

\setbeamertemplate{itemize item}{\color{Mblue}\includegraphics[width = 0.02\paperwidth]{figures/hand}}

\definecolor{myyellow}{RGB}{242,226,149}

\NewDocumentCommand\StickyNote{O{10cm}mO{10cm}}{%
\begin{tikzpicture}
\node[
drop shadow={
  shadow xshift=2pt,
  shadow yshift=-4pt
},
inner xsep=7pt,
fill=Myellow!80,
xslant=-0.03,
yslant=0.03,
inner ysep=10pt
] {\parbox[t][#1][c]{#3}{#2}};
\end{tikzpicture}%
}

\NewDocumentCommand\StickyNoteTwo{O{10cm}mO{10cm}}{%
\begin{tikzpicture}
\node[
drop shadow={
  shadow xshift=2pt,
  shadow yshift=-4pt
},
inner xsep=7pt,
fill=Mblue,
xslant=0,
yslant=0,
inner ysep=10pt
] {\parbox[t][#1][c]{#3}{#2}};
\end{tikzpicture}%
}

%\setbeamertemplate{blocks}[rounded][shadow=false]

\setbeamercolor{block title}{fg=Mblue, bg=Myellow!80} % Colors of the block titles
\setbeamercolor{block body}{fg=black,bg=Myellow!10} % Colors of the body of blocks
\setbeamercolor{block alerted title}{fg=white,bg=Mblue} % Colors of the highlighted block titles
\setbeamercolor{block alerted body}{fg=black,bg=Mblue!10} % Colors of the body of highlighted blocks
\setbeamercolor{block title example}{fg=Mblue,bg=Myellow!80}
\setbeamercolor{block body example}{fg=black,bg=Myellow!50}

%\addtobeamertemplate{block begin}{\pgfsetfillopacity{0.5}}{\pgfsetfillopacity{1}}
%\addtobeamertemplate{block alerted begin}{\pgfsetfillopacity{0.5}}{\pgfsetfillopacity{1}}
%\addtobeamertemplate{block example begin}{\pgfsetfillopacity{0.5}}{\pgfsetfillopacity{1}}

% Many more colors are available for use in beamerthemeconfposter.sty

%-----------------------------------------------------------
% Define the column widths and overall poster size
% To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns
% In this template, the separation width chosen is 0.024 of the paper width and a 4-column layout
% onecolwid should therefore be (1-(# of columns+1)*sepwid)/# of columns e.g. (1-(4+1)*0.024)/4 = 0.22
% Set twocolwid to be (2*onecolwid)+sepwid = 0.464
% Set threecolwid to be (3*onecolwid)+2*sepwid = 0.708

\newlength{\sepwid}
\newlength{\onecolwid}
\newlength{\twocolwid}
\newlength{\threecolwid}
\setlength{\paperwidth}{48in} % A0 width: 46.8in
\setlength{\paperheight}{36in} % A0 height: 33.1in
\setlength{\sepwid}{0.5in} % Separation width (white space) between columns
\setlength{\onecolwid}{12in} % Width of one column
\setlength{\twocolwid}{0.482\paperwidth} % Width of two columns
\setlength{\threecolwid}{0.723\paperwidth} % Width of three columns
\setlength{\topmargin}{-1.1in} % Reduce the top margin size
%-----------------------------------------------------------

\usepackage{graphicx}  % Required for including image
\usepackage{booktabs} % Top and bottom rules for tables
\usepackage{floatflt,subfigure}
\usepackage{xcolor}
\usepackage{wrapfig}

%----------------------------------------------------------------------------------------
%	TITLE SECTION 
%----------------------------------------------------------------------------------------

\title{ {Modeling thermal transport in gas-particle flows using machine learning} } % Poster title

\author{S. Beetham$^a$, A. Lattanzi$^a$ \& J. Capecelatro$^{a,b}$} % Author(s)

\institute{Departments of $^a$Mechanical Engineering and $^b$Aerospace Engineering, University of Michigan} % Institution(s)

%----------------------------------------------------------------------------------------
\usebackgroundtemplate{\includegraphics[width=1.25\paperwidth]{figures/CITbackground}}

\begin{document}


\addtobeamertemplate{block end}{}{\vspace*{-4pt}} % White space under blocks
\addtobeamertemplate{block alerted end}{}{\vspace*{-4pt}} % White space under highlighted (alert) blocks

\setlength{\belowcaptionskip}{-4pt} % White space under figures
\setlength\belowdisplayshortskip{-4pt} % White space under equations

\addtobeamertemplate{footline}{} 
{\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=south west, inner sep=0.0cm]  at (current page.south west)
     {\includegraphics[height = 1.9cm, width=\textwidth]{./figures/footerBox.png}};
  \end{tikzpicture}}    
\addtobeamertemplate{footline}{} 
{\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=south west, inner sep=0.2cm]  at (current page.south west)
     {\includegraphics[height=3cm]{./figures/M.png}};
  \end{tikzpicture}}
\addtobeamertemplate{footline}{} 
{\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=south east, inner sep=-0.6cm]  at (current page.south east)
     {\includegraphics[height=3cm]{./figures/CRG.png}};
  \end{tikzpicture}}
\addtobeamertemplate{footline}{} 
  {\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=south west, inner sep=-0.6cm]  at (current page.south west)
     {\includegraphics[height=3cm]{./figures/MEngineering.png}};
  \end{tikzpicture}}
\addtobeamertemplate{headline}{} 
{\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=north east, inner sep=1.5cm]  at (current page.north east)
     {\includegraphics[height=4cm]{./figures/NSF.png}};
  \end{tikzpicture}}
  \addtobeamertemplate{headline}{} 
{\begin{tikzpicture}[remember picture, overlay]
     \node [anchor=north west, inner sep=1.5cm]  at (current page.north west)
     {\includegraphics[height=4cm]{./figures/CoE_MAIZEBLUE.png}};
  \end{tikzpicture}}
  
  
\begin{frame}[t] % The whole poster is enclosed in one beamer frame
\centering
\begin{columns}[t] % The whole poster consists of three major columns, the second of which is split into two columns twice - the [t] option aligns each column's content to the top

%\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\sepwid}\end{column} 
\begin{column}{\onecolwid} % The first column


%----------------------------------------------------------------------------------------
%	OBJECTIVES
%----------------------------------------------------------------------------------------
\begin{alertblock}{Particle-scale interactions impact macro-scale thermal transport}
\centering
A motivating example: 
\includegraphics[width = 0.95\onecolwid]{figures/Motivation}

\end{alertblock}
\vspace{0.5em}
\centering
\begin{block}{Industrial applications rely on idealized, Euler-Euler models$^{\dagger}$}
\begin{columns}
\begin{column}{0.5\onecolwid}
\vspace{0.5em}
\begin{small}
\begin{align*}
\frac{\text{d} \langle \theta_f \rangle}{\text{d} \hat{x}} &= - \frac{6 \langle \varepsilon_p \rangle k_f \langle \text{Nu} \rangle}{d_p \rho_f \langle \varepsilon_f \rangle u_f c_{p,f}} \left(\langle \theta_f \rangle - \langle \theta_s \rangle \right) \\
\frac{\text{d} \langle \theta_s \rangle}{\text{d} \hat{x}} &=  \frac{12 k_f \langle \text{Nu} \rangle}{d_p \rho_p u_p c_{p,p}} \left( \langle \theta_f \rangle - \langle \theta_s \rangle \right) \\
\end{align*}
$\langle \theta_f \rangle$, $\langle \theta_p \rangle$: Average gas, particle temperatures
\end{small}
\end{column}
\begin{column}{0.35\onecolwid}
\hspace{1em} \StickyNoteTwo[10cm]{\centering \textcolor{white}{\large These models \emph{neglect} important multiphase effects like clustering.}}[10cm]
\end{column}
\end{columns}
\vspace{0.5em}
\begin{centering}
\begin{tabular}{c c}
{\small example E-E solution} & {\small example clustered case}\\
 \includegraphics[height=0.35\onecolwid]{figures/ODE_0} &
 \includegraphics[height=0.35\onecolwid]{figures/LeiHT.png} \\
 \end{tabular} \\
$\dagger$ \begin{scriptsize} Zhou \& Subramaniam (ISU) \end{scriptsize}
\end{centering}
\end{block}

\vspace{0.5em}
\begin{alertblock}{Improving industrial-scale models}
\centering
\vspace{-0.5em}
\begin{columns}
\begin{column}{0.05\onecolwid}
\end{column}
\begin{column}{0.95\onecolwid}
\begin{itemize}
\hands We use an \emph{Euler-Lagrange} framework to study the effect of clustering on thermal development length.
\hands This highly-resolved data will be used by \emph{sparse regression} to learn improved models. 
\end{itemize}
\end{column}
\end{columns}
%\StickyNote[5cm]{\large \textit{Q: How can we distill high fidelity data into tractable turbulence models for challenging flow conditions?}}[26cm]
%\vspace{0.02em}
\end{alertblock}


%----------------------------------------------------------------------------------------
%	INTRODUCTION
%----------------------------------------------------------------------------------------

\end{column} % End of the first column
\begin{column}{\sepwid}\end{column} % Empty spacer column

\begin{column}{1.2\onecolwid}
\begin{block}{A novel, two-step approach}
\centering
\includegraphics[scale = 1.25]{figures/Two-Step}
\end{block}
\vspace{1.25em}

\begin{alertblock}{Phase-averaged, thermal equation} 
\centering
\begin{small}
Spatial and temporal averages denoted as $\langle (\cdot ) \rangle$. \\
Phase-averaging denoted as $\widetilde{(\cdot)} = \langle \varepsilon_f (\cdot) \rangle / \langle \varepsilon_f \rangle$. \\
Fluctuations from mean quantities denoted as $(\cdot)^{\prime}$. \\
\vspace{0.1em}
\begin{align*}
&\frac{\text{d}\widetilde{T}_f }{\text{d}x} = -\frac{6 \kappa_f}{C_{p,f} \rho_f d_p^2 \langle \varepsilon_f \rangle} \Big[ 
\underbrace{\frac{\langle \varepsilon_p \rangle \langle {\text{Nu}} \rangle}{\widetilde{u_f}} \left( \widetilde{T}_f - \widetilde{T}_p \right)}_{\text{Term 1}}  + 
\underbrace{ \frac{\langle \varepsilon_p^{\prime} \text{Nu}^{\prime } \rangle}{\widetilde{u_f}} \left(  \widetilde{T}_f - \widetilde{T}_p \right)}_{\text{Term 2}} + \\
&\underbrace{\frac{\langle \text{Nu} \rangle}{\widetilde{u_f}} \left( \langle \varepsilon_p ^{\prime } T_f^{ \prime} \rangle - \langle \varepsilon_p ^{\prime } T_p^{\prime } \rangle \right)}_{\text{Term 3}} +
\underbrace{\frac{\langle \varepsilon_p \rangle}{\widetilde{u_f}} \left( \langle \text{Nu}^{ \prime} T_f^{ \prime} \rangle - \langle \text{Nu}^{\prime } T_p^{ \prime} \rangle \right)}_{\text{Term 4}} 
\Big] 
- \underbrace{\frac{1}{\widetilde{u_f}} \frac{\text{d}}{\text{d}x} \widetilde{u_f^{\prime } T_f^{\prime}}}_{\text{Term 5}}
\end{align*}
\end{small}
\end{alertblock} 

\vspace{1.25em}
\begin{block}{Several relevant dimensionless groups arise...}
...and are useful for establishing the modeling parameter space.
\begin{columns}
\begin{column}{0.01\onecolwid}
\end{column}
\begin{column}{0.99\onecolwid}
\begin{itemize}
\item Particle volume fraction, $\langle \varepsilon_p \rangle$ 
\item Particle Reynolds number, Re$_p = \tau_p g d_p/\nu_f$, where $\tau_p = \rho_p d_p^2/(18\rho_f\nu_f)$
\item Prandtl number, Pr$ = C_{p,f} \nu_f \rho_f /\kappa_f$, the ratio of momentum and thermal diffusivities.
\item P\'{e}clet number, Pe$ = d_p u_{\text{bulk}}/\alpha_f$
\end{itemize}
\end{column}
\end{columns}
\end{block}
\vspace{1.25em}

\begin{tikzpicture}
\node[draw, fill = Mblue,text width=0.98\textwidth] at (0,0) {\centering \tiny \color{white} This work is supported by an NSF Graduate Fellowship and computations were carried out on the Great Lakes high-performance cluster.};
\end{tikzpicture}
\vspace{1em}

\end{column}

\begin{column}{\sepwid}\end{column} % Empty spacer column

\begin{column}{1.5\onecolwid}

\begin{alertblock}{Multiphase physics affect thermal development length}
\centering
\begin{tabular}{c c c} 
\multicolumn{3}{c}{Particle volume fraction $\langle \varepsilon_p \rangle$} \\
0.001 & 0.0255 & 0.05\\
\includegraphics[height= 0.22\textwidth]{figures/DevLengthCase1} & 
\includegraphics[height = 0.22\textwidth]{figures/DevLengthCase2} & 
\includegraphics[height = 0.22\textwidth]{figures/DevLengthCase3} 
\end{tabular}
\begin{tabular}{c c c c} 
E-E Model for $T_p$: & \ModelTp & E-E Model for $T_f$: & \ModelTg \\ 
E-L average of $T_p$: & \ELTp & E-L average of $T_f$: & \ELTg \\ 
\end{tabular}\\
Shaded regions denote the square root of the variance of the EL data. 
\end{alertblock}

\vspace{0.5em}

\begin{block}{Which terms are dominate and require modeling?}
\centering
\begin{tabular}{c c c} 
\multicolumn{3}{c}{Particle volume fraction $\langle \varepsilon_p \rangle$} \\
0.001 & 0.0255 & 0.05\\
\includegraphics[height= 0.22\textwidth]{figures/BalanceCase1} & 
\includegraphics[height = 0.22\textwidth]{figures/BalanceCase2} & 
\includegraphics[height = 0.22\textwidth]{figures/BalanceCase3} 
\end{tabular}
\begin{tabular}{c c c}
\TermOne Term 1:  $\frac{\langle \varepsilon_p \rangle \langle {\text{Nu}} \rangle}{\widetilde{u_f}} \left( \widetilde{T}_f - \widetilde{T}_p \right) $ &\hspace{2em} &
\TermThree Term 3: $\frac{\langle \text{Nu} \rangle}{\widetilde{u_f}} \left( \langle \varepsilon_p ^{\prime } T_f^{ \prime} \rangle - \langle \varepsilon_p ^{\prime } T_p^{\prime } \rangle \right)$ \\
Closed (no model required) & & Fluid temperature \emph{seen} by particles
\end{tabular}
\end{block}
\vspace{0.5em}
%\begin{alertblock}{Additional features}
%\end{alertblock}

\begin{alertblock}{Using machine learning to develop improved models} 
\centering
\vspace{0.25em}
\begin{columns}
\begin{column}{0.5\onecolwid}
\begin{columns}
\begin{column}{0.01\onecolwid}
\end{column}
\begin{column}{0.6\onecolwid}
Sparse regression postulates that any quantity can be modeled as 
{\large $$\mathcal{D} = \mathcal{T}\hat{\beta}$$}
\vspace{-0.5em}
\begin{itemize}
\item $\mathcal{D}$ is the quantity of interest
\item $\mathcal{T}$ is a matrix of (potentially nonlinear) trial functions
\item $\hat{\beta}$ is an optimal set of coefficients 
\end{itemize} 
\end{column}
\end{columns}
\end{column}
\begin{column}{0.5\onecolwid}
Ideal coefficients are found by solving,\\
\vspace{0.25em}
\includegraphics[scale = 0.65]{figures/SparseRegression2}
\end{column}
\end{columns}
\StickyNote[2.5cm]{\large \centering Sparse regression results in a \textit{compact, algebraic} model!}[36cm] \\
This methodology will be used to model dominant terms.
\end{alertblock}

%\begin{block}{References}

%\nocite{*} % Insert publications even if they are not cited in the poster
%\tiny{\bibliographystyle{unsrt}
%\bibliography{sample}\vspace{0.75in}}
%\end{block}

%----------------------------------------------------------------------------------------
%	ACKNOWLEDGEMENTS
%----------------------------------------------------------------------------------------


\end{column}

\end{columns} % End of all the columns in the poster

\end{frame} % End of the enclosing frame

\end{document}


Next
Next

Introduction to LaTeX